Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 420
Filtrar
1.
Opt Lett ; 49(8): 1957-1960, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621050

RESUMO

In the past two decades, photothermal microscopy (PTM) has achieved sensitivity at the level of a single particle or molecule and has found applications in the fields of material science and biology. PTM is a far-field imaging method; its resolution is restricted by the diffraction limits. In our previous work, the modulated difference PTM (MDPTM) was proposed to improve the lateral resolution, but its resolution improvement was seriously constrained by information loss and artifacts. In this Letter, a deep learning approach of the cycle generative adversarial network (Cycle GAN) is employed for further improving the resolution of PTM, called DMDPTM. The point spread functions (PSFs) of both PTM and MDPTM are optimized and act as the second generator of Cycle GAN. Besides, the relationship between the sample's volume and the photothermal signal is utilized during dataset construction. The images of both PTM and MDPTM are utilized as the inputs of the Cycle GAN to incorporate more information. In the simulation, DMDPTM quantitatively distinguishes a distance of 60 nm between two nanoparticles (each with a diameter of 60 nm), demonstrating a 4.4-fold resolution enhancement over the conventional PTM. Experimentally, the super-resolution capability of DMDPTM is verified by restored images of Au nanoparticles, achieving the resolution of 114 nm. Finally, the DMDPTM is successfully employed for the imaging of carbon nanotubes. Therefore, the DMDPTM will serve as a powerful tool to improve the lateral resolution of PTM.

2.
Psychol Res ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38632161

RESUMO

Reward has been known to render the reward-associated stimulus more salient to block effective attentional orienting in space. However, whether and how reward influences goal-directed attention in time remains unclear. Here, we used a modified attentional cueing paradigm to explore the effect of reward on temporal attention, in which the valid targets were given a low monetary reward and invalid targets were given a high monetary reward. The results showed that the temporal cue validity effect was significantly smaller when the competitive reward structure was employed (Experiment 1), and we ruled out the possibility that the results were due to the practice effect (Experiment 2a) or a reward-promoting effect (Experiment 2b). When further strengthening the intensity of the reward from 1:10 to 1:100 (Experiment 3), we found a similar pattern of results to those in Experiment 1. These results suggest that reward information which was based on relative instead of absolute values can weaken, but not reverse, the orienting attention in time.

3.
ACS Cent Sci ; 10(3): 666-675, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38559305

RESUMO

The Stimulator of Interferon Genes (STING) pathway is a promising target for cancer immunotherapy. Despite recent advances, therapies targeting the STING pathway are often limited by routes of administration, suboptimal STING activation, or off-target toxicity. Here, we report a dendritic cell (DC)-targeted polymeric prodrug platform (polySTING) that is designed to optimize intracellular delivery of a diamidobenzimidazole (diABZI) small-molecule STING agonist while minimizing off-target toxicity after parenteral administration. PolySTING incorporates mannose targeting ligands as a comonomer, which facilitates its uptake in CD206+/mannose receptor+ professional antigen-presenting cells (APCs) in the tumor microenvironment (TME). The STING agonist is conjugated through a cathepsin B-cleavable valine-alanine (VA) linker for selective intracellular drug release after receptor-mediated endocytosis. When administered intravenously in tumor-bearing mice, polySTING selectively targeted CD206+/mannose receptor+ APCs in the TME, resulting in increased cross-presenting CD8+ DCs, infiltrating CD8+ T cells in the TME as well as maturation across multiple DC subtypes in the tumor-draining lymph node (TDLN). Systemic administration of polySTING slowed tumor growth in a B16-F10 murine melanoma model as well as a 4T1 murine breast cancer model with an acceptable safety profile. Thus, we demonstrate that polySTING delivers STING agonists to professional APCs after systemic administration, generating efficacious DC-driven antitumor immunity with minimal side effects. This new polymeric prodrug platform may offer new opportunities for combining efficient targeted STING agonist delivery with other selective tumor therapeutic strategies.

4.
Exp Gerontol ; 191: 112436, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38636570

RESUMO

Long noncoding RNA nuclear-enriched abundant transcript 1 (NEAT1) is involved in the progression of Parkinson's disease (PD), but the specific regulatory role needs further exploration. This study showed that the expression of NEAT1 was upregulated in the cerebrospinal fluid (CSF) and peripheral blood of patients with different stages of PD. 1-Methyl-4-phenylpyridine (MPP)-treated PC 12 cells were transfected with si-NEAT1, and MPP treatment promoted cell apoptosis, oxidative stress and inflammatory factor secretion. Si-NEAT1 reversed the effects of MPP. NEAT1 silencing eliminated the effect of MPP on the protein expression levels of LC3-II and p62/SQSTM1. By using an online bioinformatics database, Fused in Sarcoma (FUS) was confirmed to be an RNA binding protein of NEAT1, and it was highly expressed in the CSF and peripheral blood of patients with PD. Si-FUS was transfected into MPP-treated PC 12 cells to detect cell apoptosis, oxidative stress, inflammatory factor secretion and autophagy, and the results were the same as those of transfection of si-NEAT1. Furthermore, MPP treatment reduced the phosphorylation levels of PI3K, Akt and mTOR, whereas si-FUS reversed the effects of MPP. In vivo, compared with the model group, the PD mice showed reduced NEAT1 and FUS expression levels and activated PI3K pathway after being injected with si-NEAT1. The brain tissue of NEAT1-silenced PD mice had decreased inflammatory infiltration and apoptosis and increased neurological scores. In conclusion, NEAT1 is involved in PD progression through FUS-mediated inhibition of the PI3K/AKT/mTOR signalling pathway.

5.
Chem Sci ; 15(13): 4952-4959, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38550696

RESUMO

Due to their sustainability, environmental friendliness, high specific capacity, and rapid reaction kinetics, quinone cathodes have broad application prospects in aqueous zinc-ion batteries (AZIBs). However, conventional small-molecule quinone cathodes usually suffer from unavoidable dissolution, resulting in terrible cycling stability. Herein, based on a strategy of molecular structure optimization, calix[8]quinone (C8Q) is for the first time used as a cathode in AZIBs. By extending the structure of the classical small-molecule quinone cathode calix[4]quinone (C4Q), C8Q further adds four p-benzoquinone structural units, which significantly suppresses the dissolution of its discharge products and greatly improves the cycle stability of the cathode. Specifically, the C8Q cathode displays a discharge specific capacity of 207.2 mA h g-1 at 1 A g-1 and a long-life cycle stability (93 mA h g-1/10 A g-1/10000th). Even with a high active material loading of 11 mg cm-2, the Zn‖C8Q battery also exhibits high redox reversibility and remarkable electrochemical stability. Furthermore, the belt-shaped Zn‖C8Q battery has high stability and outstanding flexibility, indicating its promising application in flexible wearable electronic devices.

6.
Materials (Basel) ; 17(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38473558

RESUMO

The microstructures and mechanical properties of a γ'-strengthened nickel-based superalloy, GH4099, produced by laser powder bed fusion, at room temperature and 900 °C are investigated, followed by three various heat treatments. The as-built (AB) alloy consists of cellular/dendrite substructures within columnar grains aligning in <100> crystal orientation. No γ' phase is observed in the AB sample due to the relatively low content of Al +Ti. Following the standard solid solution treatment, the molten pool boundaries and cellular/dendrite substructures disappear, whilst the columnar grains remain. The transformation of columnar grains to equiaxed grains occurs through the primary solid solution treatment due to the recovery and recrystallization process. After aging at 850 °C for 480 min, the carbides in the three samples distributed at grain boundaries and within grains and the spherical γ' phase whose size is about 43 nm ± 16 nm develop in the standard solid solution + aging and primary solid solution + aging samples (SA and PA samples) while the bimodal size of cubic (181 nm ± 85 nm) and spherical (43 nm ± 16 nm) γ' precipitates is presented in the primary solid solution + secondary solid solution + aging sample (PSA samples). The uniaxial tensile tests are carried out at room temperature (RT) and 900 °C. The AB sample has the best RT ductility (~51% of elongation and ~67% of area reduction). Following the three heat treatments, the samples all acquire excellent RT tensile properties (>750 MPa of yield strengths and >32% of elongations). However, clear ductility dips and intergranular fracture modes occur during the 900 °C tensile tests, which could be related to carbide distribution and a change in the deformation mechanism.

7.
Materials (Basel) ; 17(5)2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38473662

RESUMO

In order to improve the impact resistance of sandwich panels under low-velocity impact, the lotus leaf vein is selected as a biological prototype to design a bio-inspired honeycomb (BIH) sandwich panel. ABAQUS is used to establish and effectively verify the finite element (FE) model of the BIH sandwich panel. To systematically compare and study the mechanical properties of BIH and conventional hexagonal honeycomb sandwich panels under low-velocity impact, the maximum displacement of face-sheets, the deformation mode, the plastic energy consumption and the dynamic response curve of the impact end are presented. At the same time, the performance differences between them are revealed from the perspective of an energy absorption mechanism. Furthermore, the influence of the circumscribed circle diameter ratio of the BIH trunk to branch (γ), the thickness ratio of the trunk to branch (K) and the impact angle (θ) on impact resistance is studied. Finally, the BIH sandwich panel is further optimized by using the response surface method. It can be concluded that, compared to conventional hexagonal honeycomb sandwich panels, the addition of walls in the BIH sandwich panel reduces the maximum deformation of the rear face-sheet by 10.29% and increases plastic energy consumption by 8.02%. Properly adjusting the structural parameters can effectively enhance the impact resistance of the BIH sandwich panel.

8.
J Med Chem ; 67(6): 5075-5092, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38483150

RESUMO

Aberrantly elevated adenosine in the tumor microenvironment exerts its immunosuppressive functions through adenosine receptors A2AR and A2BR. Antagonism of A2AR and A2BR has the potential to suppress tumor growth. Herein, we report a systemic assessment of the effects of an indole modification at position 4, 5, 6, or 7 on both A2AR/A2BR activity and selectivity of novel 2-aminopyrimidine compounds. Substituting indole at the 4-/5-position produced potent A2AR/A2BR dual antagonism, whereas the 6-position of indole substitution gave highly selective A2BR antagonism. Molecular dynamics simulation showed that the 5-cyano compound 7ai had a lower binding free energy than the 6-cyano compound 7aj due to water-bridged hydrogen bond interactions with E169 or F168 in A2AR. Of note, dual A2AR/A2BR antagonism by compound 7ai can profoundly promote the activation and cytotoxic function of T cells. This work provided a strategy for obtaining novel dual A2AR/A2BR or A2BR antagonists by fine-tuning structural modification.


Assuntos
Pirimidinas , Receptor A2A de Adenosina , Receptor A2B de Adenosina , Receptor A2A de Adenosina/metabolismo , Receptor A2B de Adenosina/metabolismo , Adenosina/metabolismo , Indóis
9.
Sci China Life Sci ; 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38319473

RESUMO

The adenosine subfamily G protein-coupled receptors A2AR and A2BR have been identified as promising cancer immunotherapy candidates. One of the A2AR/A2BR dual antagonists, AB928, has progressed to a phase II clinical trial to treat rectal cancer. However, the precise mechanism underlying its dual-antagonistic properties remains elusive. Herein, we report crystal structures of the A2AR complexed with AB928 and a selective A2AR antagonist 2-118. The structures revealed a common binding mode on A2AR, wherein the ligands established extensive interactions with residues from the orthosteric and secondary pockets. In contrast, the cAMP assay and A2AR and A2BR molecular dynamics simulations indicated that the ligands adopted distinct binding modes on A2BR. Detailed analysis of their chemical structures suggested that AB928 readily adapted to the A2BR pocket, while 2-118 did not due to intrinsic differences. This disparity potentially accounted for the difference in inhibitory efficacy between A2BR and A2AR. This study serves as a valuable structural template for the future development of selective or dual inhibitors targeting A2AR/A2BR for cancer therapy.

10.
J Orthop Surg Res ; 19(1): 110, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308313

RESUMO

BACKGROUND: To investigate the clinical effects of a unilateral external fixator combined with bone transport and tibio-talar fusion in the treatment of severe postoperative infection of peri-ankle fractures. METHODS: The clinical data of 32 patients (22 men and 10 women) with severe postoperative infection of peri-ankle fractures were retrospectively analyzed. Patients' age ranged from 26 to 62 (mean, 42 ± 9.5) years old. The types of fractures were distal tibia fracture (25 cases), distal tibia and fibula fracture (5 cases), and talus fracture (2 cases). All patients underwent treatment with unilateral external fixation combined with bone transport and tibio-talar fusion. 6 patients with severe infection received two-stage treatment involving focal debridement and external fixation, osteotomy, and bone transport. The remaining 26 patients underwent debridement, external fixation, and osteotomy simultaneously. The length of bone transport, total fixation time of the external fixator, and postoperative complications were recorded for all patients. The efficacy of the treatment was assessed using the American Association of Foot and Ankle Society (AOFAS) ankle-hindfoot score. RESULTS: Patients were followed up for 16-36 months, with an average follow-up time of 24 months. The length of tibia bone transport ranged from 5 to 15 cm, with a mean length of 8.5 cm. The external fixator was applied for 12-24 months, with an average duration of 16 months. One patient suffered from refracture at tibio-talar fusion site, and one patient had external fixation pin-tract infection. No complications, such as recurrent infections (especially the MRSA infection), poor mineralization, refracture, iatrogenic nerve damage or fusion failure, were found in the remaining patients. The preoperative AOFAS ankle-hindfoot function score was 40.0 ± 3.8 (range, 30-52) points, and it increased to 75.0 ± 3.0 (range, 67-78) points at the last follow-up. CONCLUSION: A unilateral external fixator combined with bone transport and tibio-talar fusion is an effective method for treating severe postoperative infection of peri-ankle fractures. This approach is capable of reconstructing large bone defects that remain after clearing the infected lesion. Additionally, it provides stability to the ankle, enhances ankle-hindfoot function, and improves the patient's quality of life.


Assuntos
Fraturas do Tornozelo , Fraturas Ósseas , Masculino , Humanos , Feminino , Adulto , Pessoa de Meia-Idade , Fraturas do Tornozelo/diagnóstico por imagem , Fraturas do Tornozelo/cirurgia , Estudos Retrospectivos , Qualidade de Vida , Resultado do Tratamento , Fixadores Externos , Fraturas Ósseas/cirurgia , Complicações Pós-Operatórias/etiologia
11.
J Cancer ; 15(6): 1701-1717, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38370368

RESUMO

The mechanism of action of UBE2C in lung adenocarcinoma (LUAD) and its significance in cancer diagnosis, targeted therapy and immunotherapy, even in pan-cancer, are still unclear. Several large public databases and online analysis tools were used for big data mining analysis. RNA interference technology, CCK8 assay, flow cytometry and apoptosis detection, and western blot were used for in vitro experiments. UBE2C was found to be overexpressed in various of tumors, including LUAD, and its expression level was found to be significantly related to gender, weight, tumor stage, grade and prognosis in LUAD. Downregulation of UBE2C expression induced proliferation suppression and G2/M phase arrest and cell apoptosis in LUAD cells and suppressed LUAD cell growth through inhibiting the Akt-mTOR signaling pathway. Expression level of UBE2C was negatively correlated with B cells and CD4+ T cell, and also with immune checkpoint genes in LUAD. Pan-cancer assay shown that UBE2C was significantly overexpressed in 28 cancers and was correlated with Ki-67 index in many cancers. Overexpression of UBE2C in BRCA, LUAD and MESO indicated worse Overall Survival (OS). UBE2C expression levels were positively associated with immunocyte infiltration, immune regulatory genes, immune checkpoints, TMB, MSI and MMRs in some cancers. Additionally, Single-cell functional analysis showed that UBE2C was positively correlated with cell cycle, proliferation, DNA damage, EMT, DNA repair, invasion and differentiation in some cancers. These findings suggested that UBE2C could be regarded as a latent diagnosis and prognostic biomarker and a new target for immunological therapy of cancers including LUAD.

12.
Genes Dis ; 11(3): 101026, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38292186

RESUMO

The evolutionarily conserved Wnt signaling pathway plays a central role in development and adult tissue homeostasis across species. Wnt proteins are secreted, lipid-modified signaling molecules that activate the canonical (ß-catenin dependent) and non-canonical (ß-catenin independent) Wnt signaling pathways. Cellular behaviors such as proliferation, differentiation, maturation, and proper body-axis specification are carried out by the canonical pathway, which is the best characterized of the known Wnt signaling paths. Wnt signaling has emerged as an important factor in stem cell biology and is known to affect the self-renewal of stem cells in various tissues. This includes but is not limited to embryonic, hematopoietic, mesenchymal, gut, neural, and epidermal stem cells. Wnt signaling has also been implicated in tumor cells that exhibit stem cell-like properties. Wnt signaling is crucial for bone formation and presents a potential target for the development of therapeutics for bone disorders. Not surprisingly, aberrant Wnt signaling is also associated with a wide variety of diseases, including cancer. Mutations of Wnt pathway members in cancer can lead to unchecked cell proliferation, epithelial-mesenchymal transition, and metastasis. Altogether, advances in the understanding of dysregulated Wnt signaling in disease have paved the way for the development of novel therapeutics that target components of the Wnt pathway. Beginning with a brief overview of the mechanisms of canonical and non-canonical Wnt, this review aims to summarize the current knowledge of Wnt signaling in stem cells, aberrations to the Wnt pathway associated with diseases, and novel therapeutics targeting the Wnt pathway in preclinical and clinical studies.

13.
Bioact Mater ; 34: 51-63, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38186960

RESUMO

Effective bone regeneration through tissue engineering requires a combination of osteogenic progenitors, osteoinductive biofactors and biocompatible scaffold materials. Mesenchymal stem cells (MSCs) represent the most promising seed cells for bone tissue engineering. As multipotent stem cells that can self-renew and differentiate into multiple lineages including bone and fat, MSCs can be isolated from numerous tissues and exhibit varied differentiation potential. To identify an optimal progenitor cell source for bone tissue engineering, we analyzed the proliferative activity and osteogenic potential of four commonly-used mouse MSC sources, including immortalized mouse embryonic fibroblasts (iMEF), immortalized mouse bone marrow stromal stem cells (imBMSC), immortalized mouse calvarial mesenchymal progenitors (iCAL), and immortalized mouse adipose-derived mesenchymal stem cells (iMAD). We found that iMAD exhibited highest osteogenic and adipogenic capabilities upon BMP9 stimulation in vitro, whereas iMAD and iCAL exhibited highest osteogenic capability in BMP9-induced ectopic osteogenesis and critical-sized calvarial defect repair. Transcriptomic analysis revealed that, while each MSC line regulated a distinct set of target genes upon BMP9 stimulation, all MSC lines underwent osteogenic differentiation by regulating osteogenesis-related signaling including Wnt, TGF-ß, PI3K/AKT, MAPK, Hippo and JAK-STAT pathways. Collectively, our results demonstrate that adipose-derived MSCs represent optimal progenitor sources for cell-based bone tissue engineering.

14.
BMC Cardiovasc Disord ; 24(1): 57, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238666

RESUMO

BACKGROUND: Platelet count is associated with cardiovascular risk and mortality in several cardiovascular diseases, but the association of the nadir platelet counts post-septal myectomy with the cardiovascular complication risk in hypertrophic obstructive cardiomyopathy patients remains unclear. METHODS: This retrospective cohort study reviewed all adult patients who underwent septal myectomy at a single tertiary referral center over a 5-year period. Postoperative nadir platelet count was defined as the lowest platelet count in the first 4 postoperative days or until hospital discharge. The composite outcome included cardiovascular death, myocardial infarction, heart failure, malignant arrhythmia, cardiac tamponade, and major bleeding events within 30 days postoperatively. Univariable and multivariable logistic regression and restricted cubic spline models were used to assess the association between postoperative nadir platelet count and the 30-day postoperative cardiovascular complication risk. RESULTS: Among the 113 enrolled patients, 23 (20.4%) developed cardiovascular events within 30 days postoperatively. The incidence of postoperative cardiovascular complications was significantly higher in patients with a nadir platelet count ≤ 99 × 109/L than in those with a nadir platelet count > 99 × 109/L (33.3% vs. 7.1%, crude risk ratio: 4.67, 95% confidence interval: 1.69-12.85, P < 0.001). Multivariable logistic regression revealed that postoperative nadir platelet count was negatively associated with 30-day postoperative cardiovascular complications (adjusted odds ratio: 0.97; 95% confidence interval: 0.95-0.99; P = 0.005) and the association was linear (Pnonlinearity = 0.058) after full adjustment. The association between nadir platelet count and cardiovascular complications within 30 days post-surgery was consistent in all predefined subgroups (Pinteraction > 0.05). CONCLUSION: The postoperative nadir platelet count was significantly associated with the 30-day post-myectomy risk of cardiovascular complications in hypertrophic obstructive cardiomyopathy patients. TRIAL REGISTRATION: This trial was registered at ClinicalTrials.gov (NCT04275544).


Assuntos
Cardiomiopatia Hipertrófica , Septos Cardíacos , Adulto , Humanos , Contagem de Plaquetas , Resultado do Tratamento , Estudos Retrospectivos , Septos Cardíacos/cirurgia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/epidemiologia , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/diagnóstico por imagem , Cardiomiopatia Hipertrófica/cirurgia , Progressão da Doença
15.
Neuroscience ; 536: 104-118, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-37977418

RESUMO

Inflammatory pain is one of the most prevalent forms of pain and negatively influences the quality of life. Neuromodulation has been an expanding field of pain medicine and is accepted by patients who have failed to respond to several conservative treatments. Despite its effectiveness, neuromodulation still lacks clinically robust evidence on inflammatory pain management. Optogenetics, which controls particular neurons or brain circuits with high spatiotemporal accuracy, has recently been an emerging area for inflammatory pain management and studying its mechanism. This review considers the fundamentals of optogenetics, including using opsins, targeting gene expression, and wavelength-specific light delivery techniques. The recent evidence on application and development of optogenetic neuromodulation in inflammatory pain is also summarised. The current limitations and challenges restricting the progression and clinical transformation of optogenetics in pain are addressed. Optogenetic neuromodulation in inflammatory pain has many potential targets, and developing strategies enabling clinical application is a desirable therapeutic approach and outcome.


Assuntos
Optogenética , Qualidade de Vida , Humanos , Optogenética/métodos , Dor , Neurônios/fisiologia , Manejo da Dor
16.
IEEE J Biomed Health Inform ; 28(2): 893-904, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38019618

RESUMO

Unsupervised domain adaptation (UDA) methods have shown great potential in cross-modality medical image segmentation tasks, where target domain labels are unavailable. However, the domain shift among different image modalities remains challenging, because the conventional UDA methods are based on convolutional neural networks (CNNs), which tend to focus on the texture of images and cannot establish the global semantic relevance of features due to the locality of CNNs. This paper proposes a novel end-to-end Swin Transformer-based generative adversarial network (ST-GAN) for cross-modality cardiac segmentation. In the generator of ST-GAN, we utilize the local receptive fields of CNNs to capture spatial information and introduce the Swin Transformer to extract global semantic information, which enables the generator to better extract the domain-invariant features in UDA tasks. In addition, we design a multi-scale feature fuser to sufficiently fuse the features acquired at different stages and improve the robustness of the UDA network. We extensively evaluated our method with two cross-modality cardiac segmentation tasks on the MS-CMR 2019 dataset and the M&Ms dataset. The results of two different tasks show the validity of ST-GAN compared with the state-of-the-art cross-modality cardiac image segmentation methods.


Assuntos
Fontes de Energia Elétrica , Coração , Humanos , Redes Neurais de Computação , Semântica , Processamento de Imagem Assistida por Computador
17.
Food Chem ; 439: 138102, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38100873

RESUMO

Ochratoxin A (OTA) is a potent carcinogen, and is among the most dangerous mycotoxins in agricultural products. In this study, an ultrasensitive dual-mode immunosensor was developed for naked-eye and fluorescence detection of OTA based on Ag-doped core-shell nanohybrids (Ag@CSNH). Complete antigen-labeled Ag@CSNH (CA-Ag@CSNH) were used as a competitive bind and dual-mode probe. The diffused doping structure of CA-Ag@CSNH provided improved stability, color and fluorescence quencher performance. Antibodies modified magnetic beads were used as a capture probe. The competitive binding between OTA and CA-Ag@CSNH produced both color change and fluorescence quenching. Ultraviolet and fluorescence intensitie correlated linearly with OTA concentration ranges of 0.03-3 ng/mL and 10-10000 pg/mL, and limits of detection of 0.0235 ng/mL and 0.9921 pg/mL, respectively. The practical applicability of proposed strategy was demonstrated by analysis of OTA in spiked corn, soybean and flour samples. This study offers a new insight on multi-mode platforms for various applications.


Assuntos
Técnicas Biossensoriais , Micotoxinas , Ocratoxinas , Imunoensaio , Ocratoxinas/análise , Micotoxinas/análise , Limite de Detecção
18.
Transl Cancer Res ; 12(10): 2613-2628, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37969376

RESUMO

Background: Lung cancer is the leading cause of cancer-associated mortality. Lung adenocarcinoma (LUAD) amounts to more than 40% of all lung malignancies. Therefore, developing clinically useful biomarkers for this disease is critical. DNA damage repair (DDR) is a complicated signal transduction process that ensures genomic stability. DDR should be comprehensively analyzed to elucidate their clinical significance and tumor immune microenvironment interactions. Methods: In this study, DDR-related genes (DRGs) were selected to investigate their prognostic impact on LUAD. A regression-based prognostic model was established based on The Cancer Genome Atlas (TCGA)-LUAD cohort and three external Gene Expression Omnibus (GEO) validation cohorts (GSE31210, GSE68465, and GSE72094). The robust, established model could independently predict the clinical outcomes in patients. Then, the prognostic performance of risk profiles was assessed using a time-dependent receiver operating characteristic (ROC) curve, Cox regression, nomogram, and Kaplan-Meier analyses. Furthermore, the potential biological functions and infiltration status of DRGs in LUAD were investigated with ESTIMATE and CIBERSORT. Finally, the effects of HCLS1 on the clinical features, prognosis, biological function, immune infiltration, and treatment response in LUAD were systematically analyzed. Results: Eleven DRGs were constructed to categorize patients into high- and low-risk groups. The risk score was an independent predictor of overall survival (OS). HCLS1 expression was downregulated in LUAD samples and linked with clinicopathological features. Multivariate Cox regression analysis using the Kaplan-Meier plotter revealed that low HCLS1 expression was independently associated with poor OS. Moreover, the HCLS1 high-expression group had higher immune-related gene expression and ESTIMATE scores. It was positively correlated with the infiltration of M1 macrophages, activated memory CD4 T cells, CD8 T cells, memory B cells, resting dendritic cells, and memory CD4 T cells, Tregs, and neutrophils. Conclusions: A new classification system was developed for LUAD according to DDR characteristics. This stratification has important clinical values, reliable prognosis, and immunotherapy in patients with LUAD. Moreover, HCLS1 is a potential prognostic biomarker of LUAD that correlates with the extent of immune cell infiltration in the tumor microenvironment (TME).

19.
J Med Chem ; 66(23): 16091-16108, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37982494

RESUMO

The master transcription factor receptor retinoic acid receptor-related orphan receptor γt (RORγt) regulates the differentiation of T-helper 17 (Th17) cells and the production of interleukin-17 (IL-17). Activation of RORγt+ T cells in the tumor microenvironment promotes immune infiltration to more effectively inhibit tumor growth. Therefore, RORγt agonists provide a reachable approach to cancer immunotherapy. Herein, a series of biaryl amide derivatives as novel RORγt agonists were designed, synthesized, and evaluated. Starting from the reported RORγt inverse agonist GSK805 (1), "functionality switching" and structure-based drug optimization led to the discovery of a promising RORγt agonist lead compound 14, which displayed potent and selective RORγt agonist activity and significantly improved metabolic stability. With excellent in vivo pharmacokinetic profiles, compound 14 demonstrated robust efficacy in preclinical tumor models of mouse B16F10 melanoma and LLC lung adenocarcinoma. Taken together, current studies indicate that 14 deserves further investigation as a potential lead RORγt agonist for cancer immunotherapy.


Assuntos
Amidas , Neoplasias , Camundongos , Animais , Amidas/farmacologia , Amidas/uso terapêutico , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/agonistas , Agonismo Inverso de Drogas , Imunoterapia , Microambiente Tumoral
20.
Appl Opt ; 62(29): 7577-7587, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37855464

RESUMO

This paper proposes a novel, to the best of our knowledge, double-image hiding scheme based on the chaotic fingerprint phase masks (CFPMs) and three-step phase-shifting digital holography (PSDH). First, the two images to be hidden are encoded into a complex amplitude image, and then with the help of the CFPM located in the Fresnel transform (FrT) domain and the three-step PSDH, the complex amplitude image can be encoded into three noise-like interference holograms. Finally, the three noise-like interference holograms are hidden into the texture part of the host image by the discrete wavelet transform based fusion approach and variational image decomposition technique. This scheme can simultaneously hide two images into one host image, and the invisibility and robustness of the hiding scheme can be well balanced by embedding the secret image in the texture of the host image. Additionally, the introduction of a biometric feature increases the association of the key and the authorized user, and the parameters of the chaotic map and FrT can also provide additional security to the proposed scheme. We have verified the scheme's feasibility, security, and robustness through extensive experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...